Cardiac diffusion tensor imaging based on compressed sensing using joint sparsity and low-rank approximation.
نویسندگان
چکیده
Diffusion tensor magnetic resonance (DTMR) imaging and diffusion tensor imaging (DTI) have been widely used to probe noninvasively biological tissue structures. However, DTI suffers from long acquisition times, which limit its practical and clinical applications. This paper proposes a new Compressed Sensing (CS) reconstruction method that employs joint sparsity and rank deficiency to reconstruct cardiac DTMR images from undersampled k-space data. Diffusion-weighted images acquired in different diffusion directions were firstly stacked as columns to form the matrix. The matrix was row sparse in the transform domain and had a low rank. These two properties were then incorporated into the CS reconstruction framework. The underlying constrained optimization problem was finally solved by the first-order fast method. Experiments were carried out on both simulation and real human cardiac DTMR images. The results demonstrated that the proposed approach had lower reconstruction errors for DTI indices, including fractional anisotropy (FA) and mean diffusivities (MD), compared to the existing CS-DTMR image reconstruction techniques.
منابع مشابه
Parallel imaging and compressed sensing combined framework for accelerating high-resolution diffusion tensor imaging using inter-image correlation.
PURPOSE Increasing acquisition efficiency is always a challenge in high-resolution diffusion tensor imaging (DTI), which has low signal-to-noise ratio and is sensitive to reconstruction artifacts. In this study, a parallel imaging (PI) and compressed sensing (CS) combined framework is proposed, which features motion error correction, PI calibration, and sparsity model using inter-image correlat...
متن کاملTensor completion and low-n-rank tensor recovery via convex optimization
In this paper we consider sparsity on a tensor level, as given by the n-rank of a tensor. In the important sparse-vector approximation problem (compressed sensing) and the low-rank matrix recovery problem, using a convex relaxation technique proved to be a valuable solution strategy. Here, we will adapt these techniques to the tensor setting. We use the n-rank of a tensor as sparsity measure an...
متن کاملProspective acceleration of diffusion tensor imaging with compressed sensing using adaptive dictionaries
PURPOSE Diffusion MRI requires acquisition of multiple diffusion-weighted images, resulting in long scan times. Here, we investigate combining compressed sensing and a fast imaging sequence to dramatically reduce acquisition times in cardiac diffusion MRI. METHODS Fully sampled and prospectively undersampled diffusion tensor imaging data were acquired in five rat hearts at acceleration factor...
متن کاملMultidimensional Compressed Sensing MRI Using Tensor Decomposition-Based Sparsifying Transform
Compressed Sensing (CS) has been applied in dynamic Magnetic Resonance Imaging (MRI) to accelerate the data acquisition without noticeably degrading the spatial-temporal resolution. A suitable sparsity basis is one of the key components to successful CS applications. Conventionally, a multidimensional dataset in dynamic MRI is treated as a series of two-dimensional matrices, and then various ma...
متن کاملMulti-Dimensional Wireless Tomography Using Tensor-Based Compressed Sensing
Wireless tomography is a technique for inferring a physical environment within a monitored region by analyzing RF signals traversed across the region. In this paper, we consider wireless tomography in a two and higher dimensionally structured monitored region, and propose a multi-dimensional wireless tomography scheme based on compressed sensing to estimate a spatial distribution of shadowing l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Technology and health care : official journal of the European Society for Engineering and Medicine
دوره 24 Suppl 2 شماره
صفحات -
تاریخ انتشار 2016